All-Time - Seamheads Negro Leagues Database

History


All-Time


From:


To:


Leagues:


League Type:



Pitching

-





Throws:





# Year Team
1
6
26
.188
44
32
21
0
1
269.1
244
160
278
6
119
103
6
11
1256
5.35
60
2
2
23
.080
34
26
19
0
0
219.2
169
137
175
6
147
91
6
20
990
5.61
62
3
6
20
.231
43
28
14
0
0
213.0
244
189
319
20
105
86
6
1
5
1074
7.99
65
4
6
23
.207
62
33
13
1
0
279.0
233
196
362
24
115
123
8
11
1317
6.32
66
5
5
28
.152
57
34
15
1
0
292.2
205
152
299
0
173
95
6
24
1313
4.67
66
6
4
22
.154
32
26
20
0
0
221.1
161
90
167
4
102
156
6
0
30
1015
3.66
67
7
23
33
.411
95
57
28
1
2
483.0
403
278
573
19
161
198
18
18
2231
5.18
68
8
8
31
.205
72
39
14
0
2
324.1
311
216
450
124
114
2
4
5.99
68
9
7
34
.171
59
42
27
1
0
357.0
315
201
432
2
176
98
2
28
1659
5.07
70
10
12
45
.211
95
57
27
0
1
484.0
445
417
632
205
169
6
9
2273
7.75
70
11
7
41
.146
95
49
21
0
0
408.2
433
374
623
172
153
6
19
2019
8.24
70
12
20
57
.260
142
77
24
0
651.0
536
476
930
295
309
12
14
3123
6.58
70
13
5
24
.172
56
31
12
1
0
259.0
279
211
346
15
120
106
4
3
1256
7.33
71
14
10
29
.256
49
39
29
2
0
338.1
211
128
298
6
128
101
7
24
1513
3.40
71
15
12
28
.300
73
40
17
0
5
326.0
320
270
451
17
146
142
3
7
1566
7.45
72
16
10
34
.227
84
44
18
0
0
368.0
307
263
497
22
149
133
2
1
3
1735
6.43
72
17
13
14
.481
37
27
18
1
0
223.2
180
148
270
17
72
125
3
0
6
1007
5.96
74
18
28
42
.400
132
71
31
2
4
603.1
442
410
679
205
298
14
11
6.12
74
19
6
38
.136
98
44
11
0
4
366.0
381
292
461
27
203
161
17
0
30
1775
7.18
74
20
18
32
.360
81
50
29
2
0
431.0
353
259
532
111
189
8
10
5.41
75
21
13
22
.371
48
36
24
1
0
316.2
194
116
294
4
129
118
5
30
1423
3.30
76
22
11
16
.407
41
27
16
2
0
224.0
147
119
255
5
63
108
2
3
988
4.78
76
23
8
17
.320
30
27
24
0
0
234.0
206
84
194
0
139
93
8
15
1101
3.23
76
24
6
34
.150
58
40
25
1
1
332.0
240
193
397
15
135
148
7
23
1513
5.23
77
25
17
15
.531
57
33
14
0
1
255.0
201
170
317
12
97
135
1
2
1178
6.00
77
26
10
22
.313
53
34
15
1
2
278.1
242
189
372
7
105
123
0
1
11
1314
6.11
77
27
5
31
.139
62
36
17
0
1
294.0
260
193
367
26
121
132
0
0
14
1367
5.91
78
28
8
26
.235
46
34
24
1
0
260.0
262
214
385
22
102
92
1
6
1258
7.41
78
29
33
50
.398
126
82
47
2
4
733.2
465
391
814
0
275
347
8
10
36
4.80
78
30
11
25
.306
55
36
22
1
0
302.0
232
184
360
18
102
150
3
15
1371
5.48
78
31
11
21
.344
44
33
24
0
0
293.0
197
130
307
8
87
125
5
13
1303
3.99
79
32
17
20
.459
65
37
17
3
3
300.1
228
169
350
13
92
185
5
7
1370
5.06
79
33
18
44
.290
111
62
28
1
4
521.1
418
328
667
32
155
204
8
39
2430
5.66
80
34
7
19
.269
36
26
18
1
1
223.0
186
141
308
2
85
76
1
9
1042
5.69
81
35
13
29
.310
67
42
22
2
0
361.2
244
190
373
8
151
154
8
13
1587
4.73
81
36
20
46
.303
130
68
21
1
5
567.0
546
446
759
33
284
202
9
16
2731
7.08
81
37
6
23
.207
53
29
9
0
0
221.0
197
160
291
99
89
1
6
6.52
81
38
34
34
.500
101
68
41
4
0
594.0
439
348
658
249
209
17
13
5.27
81
39
13
26
.333
68
42
23
1
1
351.0
300
236
456
18
126
171
3
11
1631
6.05
81
40
45
54
.455
172
101
41
3
867.2
623
532
1111
488
394
4127
5.52
81
41
8
38
.174
75
46
20
3
0
376.2
313
254
465
135
187
3
4
6.07
81
42
5
25
.167
55
30
11
0
1
252.2
186
141
308
92
107
4
5
5.02
82
43
24
51
.320
141
76
31
4
1
656.1
510
481
753
254
272
11
12
2955
6.60
82
44
10
17
.370
53
27
12
1
1
231.1
195
155
282
18
122
76
3
1
12
1072
6.03
82
45
13
18
.419
55
31
16
0
2
248.0
173
137
269
100
70
1
1
4.97
82
46
15
17
.469
34
32
30
1
0
274.2
157
116
291
5
95
124
3
12
1216
3.80
83
47
13
25
.342
65
39
20
1
1
333.1
278
235
409
27
121
152
5
0
7
1517
6.35
83
48
14
18
.438
44
32
22
0
0
279.1
148
108
239
2
155
112
8
17
1197
3.48
83
49
31
36
.463
103
67
38
1
2
590.1
464
381
737
42
221
314
14
27
2730
5.81
83
50
19
23
.452
67
45
30
4
1
378.2
207
170
379
18
127
203
4
9
1610
4.04
83
51
8
18
.308
31
26
21
3
0
226.2
122
50
154
2
77
116
4
22
984
1.99
83
52
31
49
.388
159
81
36
1
3
706.1
574
439
892
54
265
295
24
0
30
3263
5.59
83
53
17
18
.486
49
36
26
1
1
318.0
220
179
346
19
105
151
3
14
1406
5.07
84
54
15
31
.326
65
48
28
0
0
382.2
312
253
485
29
154
138
5
0
20
1793
5.95
84
55
21
38
.356
107
60
24
2
1
505.0
357
266
568
27
218
198
6
27
2311
4.74
84
56
24
22
.522
78
48
27
2
6
409.1
274
223
452
23
157
236
8
6
1819
4.90
84
57
32
49
.395
119
82
46
4
4
672.0
503
386
785
180
375
12
11
5.17
84
58
18
22
.450
61
42
25
2
4
353.1
221
186
375
13
119
173
3
9
1521
4.74
85
59
27
21
.563
72
48
30
6
1
408.1
275
227
447
20
181
157
8
22
1860
5.00
85
60
17
42
.288
83
59
38
1
1
495.2
416
337
628
34
185
194
13
27
2313
6.12
85
61
11
19
.367
36
30
26
0
1
265.2
161
68
241
1
85
106
10
9
1193
2.30
85
62
5
22
.185
50
27
13
0
0
219.1
171
119
236
6
110
105
3
5
1011
4.88
86
63
16
32
.333
87
49
18
2
5
426.2
283
209
501
14
158
169
7
28
1914
4.41
86
64
11
36
.234
61
47
33
1
2
386.2
279
230
453
22
139
196
2
15
1749
5.35
86
65
35
49
.417
139
84
38
5
739.2
438
363
794
383
252
0
0
3330
4.42
86
66
18
22
.450
59
41
28
2
3
364.0
163
117
304
5
160
91
2
20
1535
2.89
86
67
10
21
.323
47
31
17
1
2
265.1
187
147
327
12
107
121
0
0
5
1226
4.99
86
68
29
22
.569
87
52
26
2
2
449.0
299
244
492
13
168
272
7
2
10
2021
4.89
86
69
9
21
.300
46
30
17
3
0
255.0
143
101
251
3
89
108
3
7
199
3.56
86
70
26
18
.591
73
45
24
3
5
384.2
220
157
373
8
166
186
6
9
1677
3.67
86
71
11
22
.333
40
33
26
0
0
273.2
232
170
339
20
100
116
5
8
1252
5.59
86
72
19
28
.404
77
48
23
2
3
411.1
301
244
502
25
175
181
5
8
1871
5.34
87
73
30
29
.508
92
62
42
5
1
563.2
254
165
463
3
176
269
1
8
2301
2.63
87
74
11
16
.407
40
27
17
0
1
239.1
169
136
269
10
53
92
0
11
1057
5.11
87
75
17
24
.415
63
42
22
2
1
346.1
209
146
389
92
140
9
13
3.79
87
76
46
37
.554
120
84
57
5
4
732.0
453
353
788
26
245
400
4
27
3208
4.34
87
77
10
19
.345
39
29
21
0
1
248.2
203
163
327
19
111
106
2
11
1176
5.90
87
78
28
59
.322
172
91
38
3
764.0
546
423
919
409
216
11
1
5
3450
4.98
87
79
15
18
.455
39
33
28
1
0
288.2
178
133
352
17
64
160
0
7
1285
4.15
88
80
14
17
.452
44
32
21
2
0
285.2
154
104
276
7
104
163
4
9
1222
3.28
88
81
23
19
.548
56
43
25
2
1
345.2
195
152
376
90
141
0
9
3.96
88
82
30
31
.492
124
62
20
2
7
552.2
379
321
600
43
189
250
1
2
25
2434
5.23
88
83
12
19
.387
52
32
17
2
1
261.2
196
163
330
19
108
124
2
6
1209
5.61
89
84
46
34
.575
123
80
49
5
5
686.2
444
347
769
34
239
236
17
33
3066
4.55
89
85
14
20
.412
60
35
18
1
1
291.0
220
180
372
21
107
151
0
0
2
1352
5.57
89
86
22
22
.500
70
45
22
3
2
395.1
249
167
411
5
174
194
5
21
1743
3.80
89
87
39
41
.488
146
80
40
2
731.0
525
424
850
451
306
15
2
3431
5.22
89
88
19
14
.576
50
33
21
4
1
293.2
119
88
255
1
134
109
6
15
1223
2.70
89
89
15
10
.600
32
25
18
1
0
212.0
136
114
246
17
58
123
1
3
926
4.84
89
90
21
27
.438
74
49
29
0
1
411.0
303
249
456
23
195
192
6
25
1888
5.45
90
91
29
17
.630
61
46
37
8
1
403.0
181
134
391
0
108
181
1
15
73
2.99
90
92
45
45
.500
153
90
50
4
817.0
474
393
954
317
329
2
0
3651
4.33
90
93
27
29
.482
82
58
38
6
1
522.1
221
159
440
6
175
257
4
17
2170
2.74
90
94
21
32
.396
77
54
37
2
1
445.2
276
213
475
19
156
172
3
17
1961
4.30
90
95
16
19
.457
44
36
28
4
0
300.0
164
138
325
5
72
131
4
3
1290
4.14
90
96
45
34
.570
115
79
53
8
4
699.0
354
268
704
2
256
283
4
17
197
3.45
90
97
17
14
.548
58
40
24
6
4
360.2
149
110
320
4
117
142
1
18
1483
2.74
90
98
13
10
.565
25
25
25
3
0
217.1
80
57
175
0
67
110
0
6
897
2.36
90
99
15
40
.273
89
57
30
1
1
483.0
426
358
671
33
204
186
3
20
2272
6.67
90
100
42
40
.512
143
82
43
4
748.2
499
443
837
318
423
4
15
3340
5.33
90

If you have any questions regarding Negro Leagues statistical or biographical data, please contact gary@seamheads.com..

All biographical data, copyright 2011-2018 Gary Ashwill.

Playing statistics for 1887-1922 and 1926-1938, as well as all Cuban League games (1902-1928) and Negro League vs. Major League games (1887-1944), copyright 2011-2018 Gary Ashwill.

Playing statistics for 1923 (except Negro League vs. Major League games), copyright 2011-2018 Patrick Rock.

Playing statistics for 1933 and 1943, copyright 2013-2018 Scott Simkus.

Playing statistics for 1924-1925, 1939-1942, and 1944-1946 Negro Leagues (not including Cuban League and Negro League vs. Major League games), copyright 2011-2018 Larry Lester, Wayne Stivers, Gary Ashwill.


Defensive Regression Analysis data used here was obtained with permission from Michael Humphreys, author of Wizardry

Win Shares are calculated using the formula in the book Win Shares by Bill James